Advertisement

Somatic genomic imbalances in ‘tumour-free’ surgical margins of oral cancer

Published:January 11, 2023DOI:https://doi.org/10.1016/j.ijom.2022.12.008

      Abstract

      Up to 30% of oral squamous cell carcinoma (OSCC) patients develop local recurrence and distant metastasis. The molecular status of histologically cancer-free tumour margins could be a critical factor in predicting tumour behaviour. The aim of this study was to detect somatic genomic imbalances in OSCC with emphasis on the surgical margins. DNA was isolated from tumour tissues, margin tissues, and blood samples (used as control) obtained from 11 OSCC patients, and genome-wide array comparative genomic hybridization was performed. Imbalances were present in both tumours and margins, although, as expected, they were more prevalent in tumours (duplications, P = 0.0002; deletions, P = 0.0001). Duplications were more frequent than deletions in both tumours and margins, but without statistical significance. Fifteen imbalances in tumour tissues were recurrent and all of them were duplications. Four of these were found both in tumours and margins and involved chromosomes 1q, 8p, Xp, Yp, and Yq. Four imbalances were recurrent in margin tissue and all of them were duplications (autosomes 8 and 17 and both sex chromosomes). Histologically ‘cancer-free’ margins hide genomic alterations consistent with unexplained OSCC recurrences. Establishing the molecular status of the margins could improve outcome prediction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Markopoulos A.K.
        Current aspects on oral squamous cell carcinoma.
        Open Dent J. 2012; 6: 126-130https://doi.org/10.2174/1874210601206010126
        • Ferlay J.
        • Colombet M.
        • Soerjomataram I.
        • Mathers C.
        • Parkin D.M.
        • Piñeros M.
        • Znaor A.
        • Bray F.
        Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.
        Int J Cancer. 2019; 144: 1941-1953https://doi.org/10.1002/ijc.31937
        • Morse D.E.
        • Psoter W.J.
        • Cleveland D.
        • Cohen D.
        • Mohit-Tabatabai M.
        • Kosis D.L.
        • Eisenberg E.
        Smoking and drinking in relation to oral cancer and oral epithelial dysplasia.
        Cancer Causes Control. 2007; 18: 919-929https://doi.org/10.1007/s10552-007-9026-4
        • Drop B.
        • Strycharz-Dudziak M.
        • Kliszczewska E.
        • Polz-Dacewicz M.
        Coinfection with Epstein–Barr virus (EBV), human papilloma virus (HPV) and polyoma BK virus (BKPyV) in laryngeal, oropharyngeal and oral cavity cancer.
        Int J Mol Sci. 2017; 18: 2752
        • Kikuchi K.
        • Noguchi Y.
        • de Rivera M.W.
        • Hoshino M.
        • Sakashita H.
        • Yamada T.
        • Inoue H.
        • Miyazaki Y.
        • Nozaki T.
        • González-López B.S.
        • Ide F.
        • Kusama K.
        Detection of Epstein–Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity.
        Tumour Biol. 2016; 37: 3389-3404
        • Mao L.
        • Lee J.S.
        • Fan Y.H.
        • Ro J.Y.
        • Batsakis J.G.
        • Lippman S.
        • Hittelman W.
        • Hong W.K.
        Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment.
        Nat Med. 1996; 2: 682-685https://doi.org/10.1038/nm0696-682
        • Poeta M.L.
        • Manola J.
        • Goldwasser M.A.
        • Forastiere A.
        • Benoit N.
        • Califano J.A.
        • Ridge J.A.
        • Goodwin J.
        • Kenady D.
        • Saunders J.
        • Westra W.
        • Sidransky D.
        • Koch W.M.
        TP53 mutations and survival in squamous-cell carcinoma of the head and neck.
        N Engl J Med. 2007; 357: 2552-2561https://doi.org/10.1056/NEJMoa073770
        • Popović B.
        • Jekić B.
        • Novaković I.
        • Luković L.
        • Konstantinović V.
        • Babić M.
        • Milasin J.
        Cancer genes alterations and HPV infection in oral squamous cell carcinoma.
        Int J Oral Maxillofac Surg. 2010; 39: 909-915https://doi.org/10.1016/j.ijom.2010.05.007
        • Milasin J.
        • Pujić N.
        • Dedović N.
        • Nikolić Z.
        • Petrović V.
        • Dimitrijević B.
        High incidence of H-ras oncogene mutations in squamous cell carcinoma of lip vermilion.
        J Oral Pathol Med. 1994; 23: 298-301https://doi.org/10.1111/j.1600-0714.1994.tb00065.x
        • Agrawal N.
        • Frederick M.J.
        • Pickering C.R.
        • Bettegowda C.
        • Chang K.
        • Li R.J.
        • Fakhry C.
        • Xie T.X.
        • Zhang J.
        • Wang J.
        • Zhang N.
        • El-Naggar A.K.
        • Jasser S.A.
        • Weinstein J.N.
        • Treviño L.
        • Drummond J.A.
        • Muzny D.M.
        • Wu Y.
        • Wood L.D.
        • Hruban R.H.
        • Westra W.H.
        • Koch W.M.
        • Califano J.A.
        • Gibbs R.A.
        • Sidransky D.
        • Vogelstein B.
        • Velculescu V.E.
        • Papadopoulos N.
        • Wheeler D.A.
        • Kinzler K.W.
        • Myers J.N.
        Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.
        Science. 2011; 333: 1154-1157https://doi.org/10.1126/science.1206923
        • Izzo J.G.
        • Papadimitrakopoulou V.A.
        • Liu D.D.
        • den Hollander P.L.
        • Babenko I.M.
        • Keck J.
        • El-Naggar A.K.
        • Shin D.M.
        • Lee J.J.
        • Hong W.K.
        • Hittelman W.N.
        Cyclin D1 genotype, response to biochemoprevention, and progression rate to upper aerodigestive tract cancer.
        J Natl Cancer Inst. 2003; 95: 198-205https://doi.org/10.1093/jnci/95.3.198
        • Pomerantz R.G.
        • Grandis J.R.
        The epidermal growth factor receptor signaling network in head and neck carcinogenesis and implications for targeted therapy.
        Semin Oncol. 2004; 31: 734-743https://doi.org/10.1053/j.seminoncol.2004.09.015
        • Eljabo N.
        • Nikolic N.
        • Carkic J.
        • Jelovac D.
        • Lazarevic M.
        • Tanic N.
        • Milasin J.
        Genetic and epigenetic alterations in the tumour, tumour margins, and normal buccal mucosa of patients with oral cancer.
        Int J Oral Maxillofac Surg. 2018; 47: 976-982https://doi.org/10.1016/j.ijom.2018.01.020
        • Sutton D.N.
        • Brown J.S.
        • Rogers S.N.
        • Vaughan E.D.
        • Woolgar J.A.
        The prognostic implications of the surgical margin in oral squamous cell carcinoma.
        Int J Oral Maxillofac Surg. 2003; 32: 30-34https://doi.org/10.1054/ijom.2002.0313
        • Slaughter D.P.
        • Southwick H.W.
        • Smejkal W.
        “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin.
        Cancer. 1953; 6: 963-968https://doi.org/10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q
        • Tabor M.P.
        • Brakenhoff R.H.
        • Ruijter-Schippers H.J.
        • Kummer J.A.
        • Leemans C.R.
        • Braakhuis B.J.M.
        Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study.
        Clin Cancer Res. 2004; 10: 3607-3613https://doi.org/10.1158/1078-0432.CCR-03-0632
        • Shaw R.J.
        • Hall G.L.
        • Woolgar J.A.
        • Lowe D.
        • Rogers S.N.
        • Field J.K.
        • Liloglou T.
        • Risk J.M.
        Quantitative methylation analysis of resection margins and lymph nodes in oral squamous cell carcinoma.
        Br J Oral Maxillofac Surg. 2007; 45: 617-622https://doi.org/10.1016/j.bjoms.2007.04.015
        • Bilde A.
        • von Buchwald C.
        • Dabelsteen E.
        • Therkildsen M.H.
        • Dabelsteen S.
        Molecular markers in the surgical margin of oral carcinomas.
        J Oral Pathol Med. 2009; 38: 72-78https://doi.org/10.1111/j.1600-0714.2008.00715.x
        • Supic G.
        • Kozomara R.
        • Jovic N.
        • Zeljic K.
        • Magic Z.
        Prognostic significance of tumor-related genes hypermethylation detected in cancer-free surgical margins of oral squamous cell carcinomas.
        Oral Oncol. 2011; 47: 702-708https://doi.org/10.1016/j.oraloncology.2011.05.014
        • Lazarevic M.
        • Milosevic M.
        • Trisic D.
        • Toljic B.
        • Simonovic J.
        • Nikolic N.
        • Mikovic N.
        • Jelovac D.
        • Petrovic M.
        • Vukadinovic M.
        • Milasin J.
        Putative cancer stem cells are present in surgical margins of oral squamous cell carcinoma.
        J BUON. 2018; 23: 1686-1692
        • Amin M.B.
        • Greene F.L.
        • Edge S.B.
        • Compton C.C.
        • Gershenwald J.E.
        • Brookland R.K.
        • Meyer L.
        • Gress D.M.
        • Byrd D.R.
        • Winchester D.P.
        The eighth edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging.
        CA Cancer J Clin. 2017; 67: 93-99https://doi.org/10.3322/caac.21388
        • Jelovac D.B.
        • Tepavčević Z.
        • Nikolić N.
        • Ilić B.
        • Eljabo N.
        • Popović B.
        • Čarkić J.
        • Konstantinović V.
        • Vukadinović M.
        • Miličić B.
        • Milašin J.
        The amplification of c-erb-B2 in cancer-free surgical margins is a predictor of poor outcome in oral squamous cell carcinoma.
        Int J Oral Maxillofac Surg. 2016; 45: 700-705https://doi.org/10.1016/j.ijom.2015.11.014
        • Sparano A.
        • Quesnelle K.M.
        • Kumar M.S.
        • Wang Y.
        • Sylvester A.J.
        • Feldman M.
        • Sewell D.A.
        • Weinstein G.S.
        • Brose M.S.
        Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.
        Laryngoscope. 2006; 116: 735-741https://doi.org/10.1097/01.mlg.0000205141.54471.7f
        • Liu C.J.
        • Lin S.C.
        • Chen Y.J.
        • Chang K.M.
        • Chang K.W.
        Array-comparative genomic hybridization to detect genomewide changes in microdissected primary and metastatic oral squamous cell carcinomas.
        Mol Carcinog. 2006; 45: 721-731https://doi.org/10.1002/mc.20213
        • Freier K.
        • Knoepfle K.
        • Flechtenmacher C.
        • Pungs S.
        • Devens F.
        • Toedt G.
        • Hofele C.
        • Joos S.
        • Lichter P.
        • Radlwimmer B.
        Recurrent copy number gain of transcription factor SOX2 and corresponding high protein expression in oral squamous cell carcinoma.
        Genes Chromosomes Cancer. 2010; 49: 9-16https://doi.org/10.1002/gcc.20714
        • Sugahara K.
        • Michikawa Y.
        • Ishikawa K.
        • Shoji Y.
        • Iwakawa M.
        • Shibahara T.
        • Imai T.
        Combination effects of distinct cores in 11q13 amplification region on cervical lymph node metastasis of oral squamous cell carcinoma.
        Int J Oncol. 2011; 39: 761-769https://doi.org/10.3892/ijo.2011.1094
        • Cha J.D.
        • Kim H.J.
        • Cha I.H.
        Genetic alterations in oral squamous cell carcinoma progression detected by combining array-based comparative genomic hybridization and multiplex ligation-dependent probe amplification.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 111: 594-607https://doi.org/10.1016/j.tripleo.2010.11.020
        • Salahshourifar I.
        • Vincent-Chong V.K.
        • Kallarakkal T.G.
        • Zain R.B.
        Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma.
        Oral Oncol. 2014; 50: 404-412https://doi.org/10.1016/j.oraloncology.2014.02.005
        • Vincent-Chong V.K.
        • Salahshourifar I.
        • Woo K.M.
        • Anwar A.
        • Razali R.
        • Gudimella R.
        • Rahman Z.A.
        • Ismail S.M.
        • Kallarakkal T.G.
        • Ramanathan A.
        • Wan Mustafa W.M.
        • Abraham M.T.
        • Tay K.K.
        • Zain R.B.
        Genome wide profiling in oral squamous cell carcinoma identifies a four genetic marker signature of prognostic significance.
        PLoS One. 2017; 12e0174865https://doi.org/10.1371/journal.pone.0174865
        • Kawachi H.
        • Sugahara K.
        • Nakamura Y.
        • Katakura A.
        • Minaguchi K.
        • Shibahara T.
        Deletion polymorphism at chromosome 3q26.1 and oral squamous cell carcinoma.
        Int J Oncol. 2013; 42: 384-390https://doi.org/10.3892/ijo.2012.1749
        • Nakamura E.
        • Kozaki K.
        • Tsuda H.
        • Suzuki E.
        • Pimkhaokham A.
        • Yamamoto G.
        • Irie T.
        • Tachikawa T.
        • Amagasa T.
        • Inazawa J.
        • Imoto I.
        Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma.
        Cancer Sci. 2008; 99: 1390-1400https://doi.org/10.1111/j.1349-7006.2008.00838.x
        • Baldwin C.
        • Garnis C.
        • Zhang L.
        • Rosin M.P.
        • Lam W.L.
        Multiple microalterations detected at high frequency in oral cancer.
        Cancer Res. 2005; 65: 7561-7567https://doi.org/10.1158/0008-5472.CAN-05-1513
        • Giaretti W.
        • Maffei M.
        • Pentenero M.
        • Scaruffi P.
        • Donadini A.
        • Di Nallo E.
        • Malacarne D.
        • Marino R.
        • Familiari U.
        • Coco S.
        • Tonini G.P.
        • Castagnola P.
        • Gandolfo S.
        Genomic aberrations in normal appearing mucosa fields distal from oral potentially malignant lesions.
        Cell Oncol. 2012; 35: 43-52https://doi.org/10.1007/s13402-011-0064-2
        • Pathare S.M.
        • Gerstung M.
        • Beerenwinkel N.
        • Schäffer A.A.
        • Kannan S.
        • Pai P.
        • Pathak K.A.
        • Borges A.M.
        • Mahimkar M.B.
        Clinicopathological and prognostic implications of genetic alterations in oral cancers.
        Oncol Lett. 2011; 2: 445-451
        • Uchida K.
        • Oga A.
        • Nakao M.
        • Mano T.
        • Mihara M.
        • Kawauchi S.
        • Furuya T.
        • Ueyama Y.
        • Sasaki K.
        Loss of 3p26.3 is an independent prognostic factor in patients with oral squamous cell carcinoma.
        Oncol Rep. 2011; 26: 463-469
        • van den Broek G.B.
        • Wreesmann V.B.
        • van den Brekel M.W.
        • Rasch C.R.
        • Balm A.J.
        • Rao P.H.
        Genetic abnormalities associated with chemoradiation resistance of head and neck squamous cell carcinoma.
        Clin Cancer Res. 2007; 13: 4386-4391
        • Asnaghi L.
        • Alkatan H.
        • Mahale A.
        • Othman M.
        • Alwadani S.
        • Al-Hussain H.
        • Jastaneiah S.
        • Yu W.
        • Maktabi A.
        • Edward D.P.
        • Eberhart C.G.
        Identification of multiple DNA copy number alterations including frequent 8p11.22 amplification in conjunctival squamous cell carcinoma.
        Investig Ophthalmol Vis Sci. 2014; 55: 8604-8613
        • Sun L.
        • Li M.
        • Huang X.
        • Xu J.
        • Gao Z.
        • Liu C.
        High-resolution genome-wide analysis identified recurrent genetic alterations in NK/T-cell lymphoma, nasal type, which are associated with disease progression.
        Med Oncol. 2014; 31: 71
        • Ribeiro I.P.
        • Esteves L.
        • Santos A.
        • Barroso L.
        • Marques F.
        • Caramelo F.
        • Melo J.B.
        • Carreira I.M.
        A seven-gene signature to predict the prognosis of oral squamous cell carcinoma.
        Oncogene. 2021; 40: 3859-3869
        • Rachow S.
        • Zorn-Kruppa M.
        • Ohnemus U.
        • Kirschner N.
        • Vidal-y-Sy S.
        • von den Driesch P.
        • Börnchen C.
        • Eberle J.
        • Mildner M.
        • Vettorazzi E.
        • Rosenthal R.
        • Moll I.
        • Brandner J.M.
        Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis.
        PLoS One. 2013; 8e55116
        • Brosens R.P.
        • Belt E.J.
        • Haan J.C.
        • Buffart T.E.
        • Carvalho B.
        • Grabsch H.
        • Quirke P.
        • Cuesta M.A.
        • Engel A.F.
        • Ylstra B.
        • Meijer G.A.
        Deletion of chromosome 4q predicts outcome in stage II colon cancer patients.
        Cell Oncol. 2011; 34: 215-223
        • Song Q.
        • Qin S.
        • Pascal L.E.
        • Zou C.
        • Wang W.
        • Tong H.
        • Zhang J.
        • Catalona W.J.
        • Dhir R.
        • Morrell M.
        • Balasubramani G.K.
        • Lu Y.
        • Wang Z.
        SIRPB1 promotes prostate cancer cell proliferation via Akt activation.
        Prostate. 2020; 80: 352-364
        • Peng C.H.
        • Liao C.T.
        • Peng S.C.
        • Chen Y.J.
        • Cheng A.J.
        • Juang J.L.
        • Tsai C.Y.
        • Chen T.C.
        • Chuang Y.J.
        • Tang C.Y.
        • Hsieh W.P.
        • Yen T.C.
        A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma.
        PLoS One. 2011; 6e23452https://doi.org/10.1371/journal.pone.0023452
        • Rhie A.
        • Park W.S.
        • Choi M.K.
        • Kim J.H.
        • Ryu J.
        • Ryu C.H.
        • Kim J.I.
        • Jung Y.S.
        Genomic copy number variations characterize the prognosis of both p16-positive and p16-negative oropharyngeal squamous cell carcinoma after curative resection.
        Medicine. 2015; 94e2187https://doi.org/10.1097/MD.0000000000002187
        • Pollack J.R.
        • Perou C.M.
        • Alizadeh A.A.
        • Eisen M.B.
        • Pergamenschikov A.
        • Williams C.F.
        • Jeffrey S.S.
        • Botstein D.
        • Brown P.O.
        Genome-wide analysis of DNA copy-number changes using cDNA microarrays.
        Nat Genet. 1999; 23: 41-46https://doi.org/10.1038/12640
        • Inazawa J.
        • Inoue J.
        • Imoto I.
        Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes.
        Cancer Sci. 2004; 95: 559-563https://doi.org/10.1111/j.1349-7006.2004.tb02486.x
        • Davies J.J.
        • Wilson I.M.
        • Lam W.L.
        Array CGH technologies and their applications to cancer genomes.
        Chromosome Res. 2005; 13: 237-248https://doi.org/10.1007/s10577-005-2168-x
        • Buckley P.G.
        • Mantripragada K.K.
        • Piotrowski A.
        • Diaz de Ståhl T.
        • Dumanski J.P.
        Copy-number polymorphisms: mining the tip of an iceberg.
        Trends Genet. 2005; 21: 315-317https://doi.org/10.1016/j.tig.2005.04.007