Advertisement

Systematic review of the software used for virtual surgical planning in craniomaxillofacial surgery over the last decade

Published:December 05, 2022DOI:https://doi.org/10.1016/j.ijom.2022.11.011

      Abstract

      Craniomaxillofacial surgery has been experiencing a deep conceptual change in surgical planning over the last decade, with virtual reality technologies becoming widely adopted. The high demand has led to an exponential increase in available software. The aim of this review was to outline the current literature and provide evidence on the most used software for virtual surgical planning (VSP), and also to define contemporary knowledge on which procedures are more ready candidates for VSP. A search was performed in the major databases, and screening of the results according to the PRISMA statement identified 535 articles reporting the implementation of preoperative VSP during the years 2010–2020. A total of 77 different software programs were identified. The surgical procedures were assigned a standardized nomenclature and further simplified into 10 categories for analysis: temporomandibular joint (TMJ), implants (IMPL), malformations (MALF), reconstruction (REC), oncology (ONCO), oral surgery (ORAL), orthognathic surgery (ORTH), cranial surgery (CRANIO), trauma (TRAUMA), miscellaneous (OTHER). The journals they were reported in and the sample size of each study were also investigated. The results showed that the Materialise suite was the most widespread tool for VSP, with a prevalence of 36.3%, followed by the Geomagic family. Several packages were found to be associated with a specific type of surgical procedure. This review offers a synopsis of the array of VSP software reported in the literature and sets the basis for an informed, evidence-based use of this software in craniomaxillofacial surgery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA relevance). The European Parliament and The Council of The European Union, 2020. 〈http://data.europa.eu/eli/reg/2017/745/oj〉 [Accessibility verified November 18, 2022].

        • Tel A.
        • Bordon A.
        • Sortino M.
        • Totis G.
        • Fedrizzi L.
        • Ocello E.
        • Sembronio S.
        • Robiony M.
        Current trends in the development and use of personalized implants: engineering concepts and regulation perspectives for the contemporary oral and maxillofacial surgeon.
        Appl Sci. 2021; 1111694https://doi.org/10.3390/app112411694
        • Oh T.S.
        • Jeong W.S.
        • Chang T.J.
        • Koh K.S.
        • Choi J.W.
        Customized orbital wall reconstruction using three-dimensionally printed rapid prototype model in patients with orbital wall fracture.
        J Craniofac Surg. 2016; 27: 2020-2024https://doi.org/10.1097/SCS.0000000000003195
        • Sembronio S.
        • Tel A.
        • Robiony M.
        Protocol for fully digital and customized management of concomitant temporomandibular joint replacement and orthognathic surgery.
        Int J Oral Maxillofac Surg. 2021; 50: 212-219https://doi.org/10.1016/j.ijom.2020.04.004
        • Tel A.
        Computer-guided in-house cranioplasty: establishing a novel standard for cranial reconstruction and proposal of an updated protocol.
        J Oral Maxillofac Surg. 2020; 78: 2297.e1-2297.e16https://doi.org/10.1016/j.joms.2020.08.007
        • Kim H.
        • Son T.
        • Lee J.
        • Kim H.A.
        • Cho H.
        • Jeong W.S.
        • Choi J.W.
        • Kim Y.
        Three-dimensional orbital wall modeling using paranasal sinus segmentation.
        J Craniomaxillofac Surg. 2019; 47: 959-967https://doi.org/10.1016/j.jcms.2019.03.028
        • Longeac M.
        • Depeyre A.
        • Pereira B.
        • Barthelemy I.
        • Pham Dang N.
        Virtual surgical planning and three-dimensional printing for the treatment of comminuted zygomaticomaxillary complex fracture.
        J Stomatol Oral Maxillofac Surg. 2021; 122: 386-390https://doi.org/10.1016/j.jormas.2020.05.009
        • Wong A.
        • Goonewardene M.S.
        • Allan B.P.
        • Mian A.S.
        • Rea A.
        Accuracy of maxillary repositioning surgery using CAD/CAM customized surgical guides and fixation plates.
        Int J Oral Maxillofac Surg. 2021; 50: 494-500https://doi.org/10.1016/j.ijom.2020.08.009
        • Goh R.C.W.
        • Chang C.N.
        • Lin C.L.
        • Lo L.J.
        Customised fabricated implants after previous failed cranioplasty.
        J Plast Reconstr Aesthet Surg. 2010; 63: 1479-1484https://doi.org/10.1016/j.bjps.2009.08.010
        • Goormans F.
        • Sun Y.
        • Bila M.
        • Schoenaers J.
        • Geusens J.
        • Lübbers H.T.
        • Coucke W.
        • Politis C.
        Accuracy of computer-assisted mandibular reconstructions with free fibula flap: results of a single-center series.
        Oral Oncol. 2019; 97: 69-75https://doi.org/10.1016/j.oraloncology.2019.07.022
        • Higgins J.P.T.
        • Thomas J.
        • Chandler J.
        • Cumpston M.
        • Li T.
        • Page M.J.
        • Welch V.A.
        Cochrane Handbook for Systematic Reviews of Interventions.
        Second edition. Wiley-Blackwell, Hoboken, NJ2019
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • Shamseer L.
        • Tetzlaff J.M.
        • Akl E.A.
        • Brennan S.E.
        • Chou R.
        • Glanville J.
        • Grimshaw J.M.
        • Hróbjartsson A.
        • Lalu M.M.
        • Li T.
        • Loder E.W.
        • Mayo-Wilson E.
        • McDonald S.
        • McGuinness L.A.
        • Stewart L.A.
        • Thomas J.
        • Tricco A.C.
        • Welch V.A.
        • Whiting P.
        • Moher D.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        BMJ. 2021; 372n71https://doi.org/10.1136/bmj.n71
        • McGuinness L.A.
        • Higgins J.P.T.
        Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments.
        Res Synth Methods. 2021; 12: 55-61https://doi.org/10.1002/jrsm.1411
      2. VOSviewer—visualizing scientific landscapes. Leiden University, The Netherlands, 2022. 〈https://www.vosviewer.com/〉 [Accessibility verified November 18, 2022].

        • Zeng W.
        • Lian X.
        • Chen G.
        • Ju R.
        • Tian W.
        • Tang W.
        Digital diagnosis and treatment program for maxillofacial fractures: a retrospective analysis of 626 cases.
        J Oral Maxillofac Surg. 2018; 76: 1470-1478https://doi.org/10.1016/j.joms.2017.11.040
        • Park S.W.
        • Choi J.W.
        • Koh K.S.
        • Oh T.S.
        Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction.
        J Oral Maxillofac Surg. 2015; 73: 1540-1553https://doi.org/10.1016/j.joms.2015.03.025
        • Huang L.
        • Lin L.
        • Wang Z.
        • Shi B.
        • Zhu X.
        • Qiu Y.
        • Huang Y.
        • Yu X.
        • Liao Y.
        Personalized reconstruction of traumatic orbital defects based on precise three-dimensional orientation and measurements of the globe.
        J Craniofac Surg. 2017; 28: 172-179https://doi.org/10.1097/SCS.0000000000003201
        • Alkhayer A.
        • Piffkó J.
        • Lippold C.
        • Segatto E.
        Accuracy of virtual planning in orthognathic surgery: a systematic review.
        Head Face Med. 2020; 1634https://doi.org/10.1186/s13005-020-00250-2
        • Wang Y.
        • Li J.
        • Xu Y.
        • Huang N.
        • Shi B.
        • Li J.
        Accuracy of virtual surgical planning-assisted management for maxillary hypoplasia in adult patients with cleft lip and palate.
        J Plast Reconstr Aesthet Surg. 2020; 73: 134-140https://doi.org/10.1016/j.bjps.2019.07.003
        • Kim Y.C.
        • Jeong W.S.
        • Park T.
        • Choi J.W.
        • Koh K.S.
        • Oh T.S.
        The accuracy of patient specific implant prebented with 3D-printed rapid prototype model for orbital wall reconstruction.
        J Craniomaxillofac Surg. 2017; 45: 928-936https://doi.org/10.1016/j.jcms.2017.03.010
        • Wang P.
        • Zhang Z.
        • Wang Y.
        • Li X.
        • Ye B.
        • Li J.
        The accuracy of virtual-surgical-planning-assisted treatment of hemifacial microsomia in adult patients: distraction osteogenesis vs. orthognathic surgery.
        Int J Oral Maxillofac Surg. 2019; 48: 341-346https://doi.org/10.1016/j.ijom.2018.07.026
        • Qu X.
        • Wang M.
        • Xu L.
        • Liu J.
        • Bai S.
        • Zhang C.
        Occlusion guided double-barreled fibular osteoseptocutaneous free flap for refined mandibular reconstruction aided by virtual surgical planning.
        J Craniofac Surg. 2017; 28: 1472-1476https://doi.org/10.1097/SCS.0000000000003841
        • Qin Z.
        • Zhang Z.
        • Li X.
        • Wang Y.
        • Wang P.
        • Li J.
        One-stage treatment for maxillofacial asymmetry with orthognathic and contouring surgery using virtual surgical planning and 3D-printed surgical templates.
        J Plast Reconstr Aesthet Surg. 2019; 72: 97-106https://doi.org/10.1016/j.bjps.2018.08.015
        • Toriumi M.
        • Nagasao T.
        • Itamiya T.
        • Shimizu Y.
        • Yasudo H.
        • Sakamoto Y.
        • Ogata H.
        • Kishi K.
        3-D analysis of dislocation in zygoma fractures.
        J Craniomaxillofac Surg. 2014; 42: 397-402https://doi.org/10.1016/j.jcms.2013.06.003
        • Thiele O.C.
        • Nolte I.M.
        • Mischkowski R.A.
        • Safi A.F.
        • Perrin J.
        • Zinser M.
        • Zöller J.E.
        • Kreppel M.
        Craniomaxillofacial patient-specific CAD/CAM implants based on cone-beam tomography data—a feasibility study.
        J Craniomaxillofac Surg. 2018; 46: 1461-1464https://doi.org/10.1016/j.jcms.2018.05.056
        • Lai H.C.
        • Denadai R.
        • Ho C.T.
        • Lin H.H.
        • Lo L.J.
        Effect of Le Fort I maxillary advancement and clockwise rotation on the anteromedial cheek soft tissue change in patients with skeletal Class III pattern and midface deficiency: a 3D imaging-based prediction study.
        J Clin Med. 2020; 9262https://doi.org/10.3390/jcm9010262
        • Wang P.
        • Wang Y.
        • Zhang Z.
        • Li X.
        • Ye B.
        • Li J.
        Comprehensive consideration and design with the virtual surgical planning-assisted treatment for hemifacial microsomia in adult patients.
        J Craniomaxillofac Surg. 2018; 46: 1268-1274https://doi.org/10.1016/j.jcms.2018.05.004
        • Kang S.H.
        • Kim H.J.
        • Park H.W.
        • Lee S.H.
        Maxillary cutting guide for executing a simulated osteotomy and removing the bony interference during orthognathic surgery.
        J Med Device. 2015; 9044505https://doi.org/10.1115/1.4031162
        • Battaglia S.
        • Ricotta F.
        • Maiolo V.
        • Savastio G.
        • Contedini F.
        • Cipriani R.
        • Bortolani B.
        • Cercenelli L.
        • Marcelli E.
        • Marchetti C.
        • Tarsitano A.
        Computer-assisted surgery for reconstruction of complex mandibular defects using osteomyocutaneous microvascular fibular free flaps: use of a skin paddle-outlining guide for soft-tissue reconstruction. A technical report.
        J Craniomaxillofac Surg. 2019; 47: 293-299https://doi.org/10.1016/j.jcms.2018.11.018
        • Asutay F.
        • Atalay Y.
        • Turamanlar O.
        • Horata E.
        • Burdurlu M.Ç.
        Three-dimensional volumetric assessment of the effect of decompression on large mandibular odontogenic cystic lesions.
        J Oral Maxillofac Surg. 2016; 74: 1159-1166https://doi.org/10.1016/j.joms.2015.12.010
        • Chen S.
        • Liu B.
        • Yin N.
        • Wang Y.
        • Li H.
        Assessment of bone formation after secondary alveolar bone grafting with and without platelet-rich plasma using computer-aided engineering techniques.
        J Craniofac Surg. 2020; 31: 549-552https://doi.org/10.1097/SCS.0000000000006256
        • Laure B.
        • Louisy A.
        • Joly A.
        • Travers N.
        • Listrat A.
        • Pare A.
        Virtual 3D planning of osteotomies for craniosynostoses and complex craniofacial malformations.
        Neurochirurgie. 2019; 65: 269-278https://doi.org/10.1016/j.neuchi.2019.09.012
        • Tan A.
        • Chai Y.
        • Mooi W.
        • Chen X.
        • Xu H.
        • Zin M.A.
        • Lin L.
        • Zhang Y.
        • Yang X.
        • Chai G.
        Computer-assisted surgery in therapeutic strategy distraction osteogenesis of hemifacial microsomia: accuracy and predictability.
        J Craniomaxillofac Surg. 2019; 47: 204-218https://doi.org/10.1016/j.jcms.2018.11.014
        • Pu J.J.
        • Choi W.S.
        • Yu P.
        • Wong M.C.M.
        • Lo A.W.I.
        • Su Y.X.
        Do predetermined surgical margins compromise oncological safety in computer-assisted head and neck reconstruction?.
        Oral Oncol. 2020; 111104914https://doi.org/10.1016/j.oraloncology.2020.104914
        • Shirota T.
        • Shiogama S.
        • Asama Y.
        • Tanaka M.
        • Kurihara Y.
        • Ogura H.
        • Kamatani T.
        CAD/CAM splint and surgical navigation allows accurate maxillary segment positioning in Le Fort I osteotomy.
        Heliyon. 2019; 5e02123https://doi.org/10.1016/j.heliyon.2019.e02123
        • Fawzy H.H.
        • Choi J.W.
        Evaluation of virtual surgical plan applicability in 3D simulation-guided two-jaw surgery.
        J Craniomaxillofac Surg. 2019; 47: 860-866https://doi.org/10.1016/j.jcms.2019.03.005
        • Tarsitano A.
        • Battaglia S.
        • Ricotta F.
        • Bortolani B.
        • Cercenelli L.
        • Marcelli E.
        • Cipriani R.
        • Marchetti C.
        Accuracy of CAD/CAM mandibular reconstruction: a three-dimensional, fully virtual outcome evaluation method.
        J Craniomaxillofac Surg. 2018; 46: 1121-1125https://doi.org/10.1016/j.jcms.2018.05.010
        • Arcas A.
        • Vendrell G.
        • Cuesta F.
        • Bermejo L.
        Advantages of performing mentoplasties with customized guides and plates generated with 3D planning and printing. Results from a series of 23 cases.
        J Craniomaxillofac Surg. 2018; 46: 2088-2095https://doi.org/10.1016/j.jcms.2018.09.018
        • Geusens J.
        • Sun Y.
        • Luebbers H.T.
        • Bila M.
        • Darche V.
        • Politis C.
        Accuracy of computer-aided design/computer-aided manufacturing-assisted mandibular reconstruction with a fibula free flap.
        J Craniofac Surg. 2019; 30: 2319-2323https://doi.org/10.1097/SCS.0000000000005704
        • Shaheen E.
        • Coopman R.
        • Jacobs R.
        • Politis C.
        Optimized 3D virtually planned intermediate splints for bimaxillary orthognathic surgery: a clinical validation study in 20 patients.
        J Craniomaxillofac Surg. 2018; 46: 1441-1447https://doi.org/10.1016/j.jcms.2018.05.050
        • Osman A.H.
        • Atef M.
        Computer-guided chin harvest: a novel approach for autogenous block harvest from the mandibular symphesis.
        Clin Implant Dent Relat Res. 2018; 20: 501-506https://doi.org/10.1111/cid.12610
        • Gonzalez L.V.
        • López J.P.
        Endoscopic support and virtual surgical planning as an alternative to repair orbital wall fractures.
        J Craniofac Surg. 2020; 31: e744-e747https://doi.org/10.1097/SCS.0000000000006736
        • Liu K.
        • Sun H.
        • Zhang L.
        • Li B.
        • Chakraborty S.
        • Wang X.
        Do patient-specific cutting guides and plates improve the accuracy of maxillary repositioning in hemifacial microsomia?.
        Br J Oral Maxillofac Surg. 2020; 58: 590-596https://doi.org/10.1016/j.bjoms.2020.02.021
        • Hanafy M.
        • Akoush Y.
        • Abou-ElFetouh A.
        • Mounir R.M.
        Precision of orthognathic digital plan transfer using patient-specific cutting guides and osteosynthesis versus mixed analogue–digitally planned surgery: a randomized controlled clinical trial.
        Int J Oral Maxillofac Surg. 2020; 49: 62-68https://doi.org/10.1016/j.ijom.2019.06.023
        • Yang W.F.
        • Zhang C.Y.
        • Choi W.S.
        • Zhu W.Y.
        • Li D.T.S.
        • Chen X.S.
        • Du R.
        • Su Y.X.
        A novel “surgeon-dominated” approach to the design of 3D-printed patient-specific surgical plates in mandibular reconstruction: a proof-of-concept study.
        Int J Oral Maxillofac Surg. 2020; 49: 13-21https://doi.org/10.1016/j.ijom.2019.05.005
        • Ridwan-Pramana A.
        • Idema S.
        • Te Slaa S.
        • Verver F.
        • Wolff J.
        • Forouzanfar T.
        • Peerdeman S.
        Polymethyl methacrylate in patient-specific implants: description of a new three-dimension technique.
        J Craniofac Surg. 2019; 30: 408-411https://doi.org/10.1097/SCS.0000000000005148
        • Wittwer G.
        • Adeyemo W.L.
        • Beinemann J.
        • Juergens P.
        Evaluation of risk of injury to the inferior alveolar nerve with classical sagittal split osteotomy technique and proposed alternative surgical techniques using computer-assisted surgery.
        Int J Oral Maxillofac Surg. 2012; 41: 79-86https://doi.org/10.1016/j.ijom.2011.08.001
        • Hanasono M.M.
        • Skoracki R.J.
        Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction.
        Laryngoscope. 2013; 123: 597-604https://doi.org/10.1002/lary.23717
        • Jie B.
        • Yao B.
        • Li R.
        • An J.
        • Zhang Y.
        • He Y.
        Post-traumatic maxillofacial reconstruction with vascularized flaps and digital techniques: 10-year experience.
        Int J Oral Maxillofac Surg. 2020; 49: 1408-1415https://doi.org/10.1016/j.ijom.2020.04.012
        • Xie F.
        • Teng L.
        • Jin X.
        • Zheng J.
        • Xu J.
        • Lu J.
        • Zhang C.
        • Xu M.
        • Zeng H.
        • Li S.
        • Sun X.
        Systematic analysis of clinical outcomes of anterior maxillary and mandibular subapical osteotomy with preoperative modeling in the treatment of bimaxillary protrusion.
        J Craniofac Surg. 2013; 24: 1980-1986https://doi.org/10.1097/SCS.0b013e3182a28b45
        • Yu Y.
        • Zhang W.B.
        • Liu X.J.
        • Guo C.B.
        • Yu G.Y.
        • Peng X.
        Three-dimensional accuracy of virtual planning and surgical navigation for mandibular reconstruction with free fibula flap.
        J Oral Maxillofac Surg. 2016; 74: 1503.e1-1503.e10https://doi.org/10.1016/j.joms.2016.02.020
        • Wu H.
        • Yang L.
        • Teng L.
        • Xu M.
        • Jin X.
        • Lu J.
        • Xu J.
        • Zhang C.
        Novel technique to narrow the wide midface in Asians.
        J Oral Maxillofac Surg. 2014; 72: 2556-2566https://doi.org/10.1016/j.joms.2014.05.026
        • Shen Y.
        • Sun J.
        • Li J.
        • Ji T.
        • Li M.
        • Huang W.
        • Hu M.
        Using computer simulation and stereomodel for accurate mandibular reconstruction with vascularized iliac crest flap.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 114: 175-182https://doi.org/10.1016/j.tripleo.2011.06.030
        • Bai S.
        • Shang H.
        • Liu Y.
        • Zhao J.
        • Zhao Y.
        Computer-aided design and computer-aided manufacturing locating guides accompanied with prebent titanium plates in orthognathic surgery.
        J Oral Maxillofac Surg. 2012; 70: 2419-2426https://doi.org/10.1016/j.joms.2011.12.017
        • Roser S.M.
        • Ramachandra S.
        • Blair H.
        • Grist W.
        • Carlson G.W.
        • Christensen A.M.
        • Weimer K.A.
        • Steed M.B.
        The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results.
        J Oral Maxillofac Surg. 2010; 68: 2824-2832https://doi.org/10.1016/j.joms.2010.06.177
        • Shen Y.
        • Sun J.
        • Li J.
        • Li M.M.
        • Huang W.
        • Ow A.
        Special considerations in virtual surgical planning for secondary accurate maxillary reconstruction with vascularised fibula osteomyocutaneous flap.
        J Plast Reconstr Aesthet Surg. 2012; 65: 893-902https://doi.org/10.1016/j.bjps.2011.12.035
        • Xu Y.
        • Yan X.
        • Hua C.
        • Wang S.
        • Wu J.
        • Tan Q.
        Reconstruction of craniomaxillofacial bone defects with customized prosthesis of hydroxyapatite/epoxide acrylate maleic compound designed by computer-aided technique.
        J Craniofac Surg. 2020; 31: 389-392https://doi.org/10.1097/SCS.0000000000006021
        • Bianchi A.
        • Muyldermans L.
        • Di Martino M.
        • Lancellotti L.
        • Amadori S.
        • Sarti A.
        • Marchetti C.
        Facial soft tissue esthetic predictions: validation in craniomaxillofacial surgery with cone beam computed tomography data.
        J Oral Maxillofac Surg. 2010; 68: 1471-1479https://doi.org/10.1016/j.joms.2009.08.006
        • Marchetti C.
        • Bianchi A.
        • Muyldermans L.
        • Di Martino M.
        • Lancellotti L.
        • Sarti A.
        Validation of new soft tissue software in orthognathic surgery planning.
        Int J Oral Maxillofac Surg. 2011; 40: 26-32https://doi.org/10.1016/j.ijom.2010.09.004
        • Schouman T.
        • Murcier G.
        • Goudot P.
        The key to accuracy of zygoma repositioning: suitability of the SynpliciTi customized guide-plates.
        J Craniomaxillofac Surg. 2015; 43: 1942-1947https://doi.org/10.1016/j.jcms.2014.12.014