Advertisement

Clinical feasibility of deep learning-based automatic head CBCT image segmentation and landmark detection in computer-aided surgical simulation for orthognathic surgery

Published:November 10, 2022DOI:https://doi.org/10.1016/j.ijom.2022.10.010

      Abstract

      The purpose of this ambispective study was to investigate whether deep learning-based automatic segmentation and landmark detection, the SkullEngine, could be used for orthognathic surgical planning. Sixty-one sets of cone beam computed tomography (CBCT) images were automatically inferred for midface, mandible, upper and lower teeth, and 68 landmarks. The experimental group included automatic segmentation and landmarks, while the control group included manual ones that were previously used to plan orthognathic surgery. The qualitative analysis of segmentation showed that all of the automatic results could be used for computer-aided surgical simulation. Among these, 98.4% of midface, 70.5% of mandible, 98.4% of upper teeth, and 93.4% of lower teeth could be directly used without manual revision. The Dice similarity coefficient was 96% and the average symmetric surface distance was 0.1 mm for all four structures. With SkullEngine, it took 4 minutes to complete the automatic segmentation and an additional 10 minutes for a manual touchup. The results also showed the overall mean difference between the two groups was 2.3 mm for the midface and 2.4 mm for the mandible. In summary, the authors believe that automatic segmentation using SkullEngine is ready for daily practice. However, the accuracy of automatic landmark digitization needs to be improved.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Farrell B.B.
        • Franco P.B.
        • Tucker M.R.
        Virtual surgical planning in orthognathic surgery.
        Oral Maxillofac Surg Clin N Am. 2014; 26: 459-473
        • Xia J.J.
        • Gateno J.
        • Teichgraeber J.F.
        • Yuan P.
        • Chen K.C.
        • Li J.
        • Zhang X.
        • Tang Z.
        • Alfi D.M.
        Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence.
        Int J Oral Maxillofac Surg. 2015; 44: 1431-1440
        • Resnick C.M.
        • Inverso G.
        • Wrzosek M.
        • Padwa B.L.
        • Kaban L.B.
        • Peacock Z.S.
        Is there a difference in cost between standard and virtual surgical planning for orthognathic surgery?.
        J Oral Maxillofac Surg. 2016; 74: 1827-1833
        • Gateno J.
        • Xia J.
        • Teichgraeber J.F.
        • Rosen A.
        A new technique for the creation of a computerized composite skull model.
        J Oral Maxillofac Surg. 2003; 61: 222-227
        • McCormick S.U.
        • Drew S.J.
        Virtual model surgery for efficient planning and surgical performance.
        J Oral Maxillofac Surg. 2011; 69: 638-644
        • Assael L.A.
        The biggest movement: orthognathic surgery undergoes another paradigm shift.
        J Oral Maxillofac Surg. 2008; 66: 419-420
        • Schulze R.
        • Heil U.
        • Gross D.
        • Bruellmann D.D.
        • Dranischnikow E.
        • Schwanecke U.
        • Schoemer E.
        Artefacts in CBCT: a review.
        Dentomaxillofac Radiol. 2011; 40: 265-273
        • Qiu B.
        • van der Wel H.
        • Kraeima J.
        • Glas H.H.
        • Guo J.
        • Borra R.J.H.
        • Witjes M.J.H.
        • van Ooijen P.M.A.
        Mandible segmentation of dental CBCT scans affected by metal artifacts using coarse-to-fine learning model.
        J Pers Med. 2021; 11560
        • Deng H.
        • Barber J.C.
        • Liu Q.
        • Kuang T.
        • Kim D.
        • Gateno J.
        • Yew P.T.
        • Shen D.
        • Xia J.J.
        Clinical feasibility of automatic CBCT segmentation for orthognathic surgery: a preliminary study.
        Int J Comput Assist Radiol Surg. 2022; 17: S100-S101
        • Linares O.C.
        • Bianchi J.
        • Raveli D.
        • Batista Neto J.
        • Hamann B.
        Mandible and skull segmentation in cone beam computed tomography using super-voxels and graph clustering.
        Vis Comput. 2019; 35: 1461-1474
        • Wang L.
        • Gao Y.
        • Shi F.
        • Li G.
        • Chen K.C.
        • Tang Z.
        • Xia J.J.
        • Shen D.
        Automated segmentation of dental CBCT image with prior-guided sequential random forests.
        Med Phys. 2016; 43336
        • Chang Y.B.
        • Xia J.J.
        • Yuan P.
        • Kuo T.H.
        • Xiong Z.
        • Gateno J.
        • Zhou X.
        3D segmentation of maxilla in cone-beam computed tomography imaging using base invariant wavelet active shape model on customized two-manifold topology.
        J Xray Sci Technol. 2013; 21: 251-282
        • Yuan P.
        • Afonso F.
        • Deng H.
        • Li J.
        • Yao C.F.
        • Vu J.
        • Xi W.
        • Huang M.
        • Elias F.
        • Alfi D.
        • Gateno J.
        • Xia J.J.
        Magic wand: 3D-based interactive algorithm to accelerate CBCT segmentation.
        Int J Comput Assist Radiol Surg. 2018; 11: S24-S26
        • Swennen G.R.
        • Schutyser F.
        • Hausamen J.E.
        Three-dimensional cephalometry.
        A Color Atlas and Manual. Springer, 2005
        • Xia J.J.
        • Gateno J.
        • Teichgraeber J.F.
        • Yuan P.
        • Li J.
        • Chen K.C.
        • Jajoo A.
        • Nicol M.
        • Alfi D.M.
        Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: three-dimensional cephalometry.
        Int J Oral Maxillofac Surg. 2015; 44: 1441-1450
        • Shahidi S.
        • Bahrampour E.
        • Soltanimehr E.
        • Zamani A.
        • Oshagh M.
        • Moattari M.
        • Mehdizadeh A.
        The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images.
        BMC Med Imaging. 2014; 1432
        • Lian C.
        • Wang F.
        • Deng H.H.
        • Wang L.
        • Xiao D.
        • Kuang T.
        • Lin H.Y.
        • Gateno J.
        • Shen S.G.F.
        • Yap P.T.
        • Xia J.J.
        • Shen D.
        Multi-task dynamic transformer network for concurrent bone segmentation and large-scale landmark localization with dental CBCT.
        Med Image Comput Comput Assist Interv. 2020; 12264: 807-816
        • Zhang J.
        • Liu M.
        • Wang L.
        • Chen S.
        • Yuan P.
        • Li J.
        • Shen S.G.
        • Tang Z.
        • Chen K.C.
        • Xia J.J.
        • Shen D.
        Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.
        Med Image Anal. 2020; 60101621
        • Lo Giudice A.
        • Ronsivalle V.
        • Spampinato C.
        • Leonardi R.
        Fully automatic segmentation of the mandible based on convolutional neural networks (CNNs).
        Orthod Craniofac Res. 2021; 24: 100-107
        • Le C.
        • Deleat-Besson R.
        • Prieto J.
        • Brosset S.
        • Dumont M.
        • Zhang W.
        • Cevidanes L.
        • Bianchi J.
        • Ruellas A.
        • Gomes L.
        • Gurgel M.
        • Massaro C.
        • Aliaga-Del Castillo A.
        • Yatabe M.
        • Benavides E.
        • Soki F.
        • Al Turkestani N.
        • Evangelista K.
        • Goncalves J.
        • Valladares-Neto J.
        • Alves Garcia Silva M.
        • Chaves C.
        • Costa F.
        • Garib D.
        • Oh H.
        • Gryak J.
        • Styner M.
        • Fillion-Robin J.C.
        • Paniagua B.
        • Najarian K.
        • Soroushmehr R.
        Automatic segmentation of mandibular ramus and condyles.
        in: Annu Int Conf IEEE Eng Med Biol Soc. 2021. 2021: 2952-2955
        • Liu Q.
        • Deng H.
        • Lian C.
        • Chen X.
        • Xiao D.
        • Ma L.
        • Chen X.
        • Kuang T.
        • Gateno J.
        • Yap P.T.
        • Xia J.J.
        SkullEngine: a multi-stage CNN framework for collaborative CBCT image segmentation and landmark detection..
        Mach Learn Med Imaging. 2021; 12966: 606-614
        • Zou K.H.
        • Warfield S.K.
        • Bharatha A.
        • Tempany C.M.
        • Kaus M.R.
        • Haker S.J.
        • Wells 3rd, W.M.
        • Jolesz F.A.
        • Kikinis R.
        Statistical validation of image segmentation quality based on a spatial overlap index.
        Acad Radiol. 2004; 11: 178-189
        • Heimann T.
        • van Ginneken B.
        • Styner M.A.
        • Arzhaeva Y.
        • Aurich V.
        • Bauer C.
        • Beck A.
        • Becker C.
        • Beichel R.
        • Bekes G.
        • Bello F.
        • Binnig G.
        • Bischof H.
        • Bornik A.
        • Cashman P.M.
        • Chi Y.
        • Cordova A.
        • Dawant B.M.
        • Fidrich M.
        • Furst J.D.
        • Furukawa D.
        • Grenacher L.
        • Hornegger J.
        • Kainmuller D.
        • Kitney R.I.
        • Kobatake H.
        • Lamecker H.
        • Lange T.
        • Lee J.
        • Lennon B.
        • Li R.
        • Li S.
        • Meinzer H.P.
        • Nemeth G.
        • Raicu D.S.
        • Rau A.M.
        • van Rikxoort E.M.
        • Rousson M.
        • Rusko L.
        • Saddi K.A.
        • Schmidt G.
        • Seghers D.
        • Shimizu A.
        • Slagmolen P.
        • Sorantin E.
        • Soza G.
        • Susomboon R.
        • Waite J.M.
        • Wimmer A.
        • Wolf I.
        Comparison and evaluation of methods for liver segmentation from CT datasets.
        IEEE Trans Med Imaging. 2009; 28: 1251-1265
        • Lang Y.
        • Deng H.H.
        • Xiao D.
        • Lian C.
        • Kuang T.
        • Gateno J.
        • Yap P.T.
        • Xia J.J.
        DLLNet: an attention-based deep learning method for dental landmark localization on high-resolution 3D digital dental models.
        Med Image Comput Comput Assist Interv. 2021; 12904: 478-487