Advertisement

Computational fluid dynamics and NOSE scale to assess nasal respiratory function, and correlation with linear maxillary measurements after surgically assisted rapid maxillary expansion

Published:October 29, 2022DOI:https://doi.org/10.1016/j.ijom.2022.10.008

      Abstract

      Nasal obstruction is common in patients with a transverse maxillary deficiency. The aim of this study was to determine the variation in nasal airway resistance in adult patients with a transverse maxillary deficiency before and after surgically assisted rapid maxillary expansion (SARME) by computational fluid dynamics (CFD) using computed tomography scans, and to correlate this variation with maxillary linear measurements obtained by means of plaster models. The subjective symptoms of nasal obstruction were also analysed using a visual analogue scale (VAS) for nasal breathing and the Nasal Obstruction Symptom Evaluation (NOSE) scale. There was a median reduction of 21% in nasal airway resistance post SARME (P = 0.002). The NOSE scale score decreased (P < 0.001) and nasal breathing quality VAS scores increased in both nostrils (P < 0.001). Transverse measurements between the upper canines (C–C), premolars (PM–PM), and molars (M–M), and maxillary perimeter showed significant increases (P < 0.001), while the anteroposterior maxillary arch length showed a significant decrease (P = 0.016). An inverse proportional correlation was found between PM–PM and nasal airway resistance (r = −0.395; P = 0.034) and between M–M and nasal airway resistance (r = −0.383; P = 0.040). These results demonstrate that surgically expanding the posterior region of the maxilla results in decreased nasal airway resistance, decreased obstructive symptoms, and improved patient respiratory quality.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ramires T.
        • Maia R.A.
        • Barone R.
        Nasal cavity changes and respiratory standard after maxillary expansion.
        Braz J Otorhinolaryngol. 2008; 74: 763-769
        • DiFrancesco R.C.
        • Bregola A.G.P.
        • Pereira L.S.
        • Lima R.S.
        Aobstrução nasal e o diagnóstico ortodôntico. [Nasal obstruction and orthodontic diagnosis].
        Rev Dent Press Ortod Ortop Facial. 2006; 11: 107-113
        • Zambon C.E.
        • Ceccheti M.M.
        • Utumi E.R.
        • Pinna F.R.
        • Machado G.G.
        • Peres M.P.S.M.
        • Voegels R.L.
        Orthodontic measurements and nasal respiratory function after surgically assisted rapid maxillary expansion: an acoustic rhinometry and rhinomanometry study.
        Int J Oral Maxillofac Surg. 2012; 41: 1120-1126
        • Mitsuda S.T.
        • Pereira M.D.
        • Passos A.P.
        • Hino C.T.
        • Ferreira L.M.
        Effects of surgically assisted rapid maxillary expansion on nasal dimensions using acoustic rhinometry.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109: 191-196
        • Stewart M.G.
        • Witsell D.L.
        • Smith T.L.
        • Weaver E.M.
        • Yueh B.
        • Hannley M.T.
        Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale.
        Otolaryngol Head Neck Surg. 2004; 130: 157-163
        • Bezerra T.F.P.
        • Padua F.G.M.
        • Pilan R.R.M.
        • Stewart M.G.
        • Voegels R.L.
        Cross-cultural adaptation and validation of a quality of life questionnaire: the Nasal Obstruction Symptom Evaluation (NOSE) questionnaire.
        Rhinology. 2011; 49: 227-231
        • Menegat F.
        • Monnazzi M.S.
        • Silva B.N.
        • De Moraes M.
        • Gabrielli M.A.C.
        • Pereira-Filho V.A.
        Assessment of nasal obstruction symptoms using the NOSE scale after surgically assisted rapid maxillary expansion.
        Int J Oral Maxillofac Surg. 2015; 44: 1346-1350
        • Kahveci O.K.
        • Miman M.C.
        • Yucel A.
        • Yucedag F.
        • Okur E.
        • Altuntas A.
        The efficiency of Nose Obstruction Symptom Evaluation (NOSE) scale on patients with nasal septal deviation.
        Auris Nasus Larynx. 2012; 39: 275-279
        • Nigro J.F.A.
        • Nigro C.E.N.
        • Milon O.
        • Mello J.R.
        • Voegels R.L.
        Avaliação objetiva da permeabilidade nasal por meio da rinometria acústica. [Objective evaluation of nasal patency by acoustic rhinometry].
        Arq Otorrinolaringol. 2003; 7: 310-315
        • Clement P.A.
        • Gordts F.
        Standardisation Committee on Objective Assessment of the Nasal Airway, IRS, and ERS. Consensus report on acoustic rhinometry and rhinomanometry.
        Rhinology. 2005; 43: 169-179
        • Cole P.
        Acoustic rhinometry and rhinomametry.
        Rhinology. 2000; 16: 29-34
        • Doruk C.
        • Sökücü O.
        • Sezer H.
        • Canbay E.L.
        Evaluation of nasal airway resistance during rapid maxillary expansion using acoustic rhinometry.
        Eur J Orthod. 2004; 26: 397-401
        • Casey K.P.
        • Borojeni A.A.T.
        • Koening L.J.
        • Rhee J.S.
        • Garcia G.J.M.
        Correlation between subjective nasal patency and intranasal airflow distribution.
        Otolaryngol Head Neck Surg. 2017; 156: 741-750
        • Zhao K.
        • Malhotra P.
        • Rosen D.
        • Dalton P.
        • Pribitkin E.A.
        Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
        Anat Rec. 2014; 297: 2187-2195
        • Cherobin G.B.
        • Voegeis R.L.
        • Pinna F.B.
        • Gebrim E.M.M.S.
        • Bailey R.S.
        • Garcia G.J.M.
        Rhinometry versus computational fluid dynamics: correlated, but different techniques.
        Am J Rhinol Allergy. 2020; 35: 245-255
        • Hur J.
        • Kim H.
        • Choi J.
        • Suh S.
        • Baek S.
        Investigation of effects of miniscrew-assisted rapid expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis.
        Korean J Orthod. 2017; 47: 353-364
        • Ghoneima A.
        • AlBarakati S.
        • Jiang F.
        • Kula K.
        • Wasfy T.
        Computational fluid dynamics analysis of the upper airway after rapid maxillary expansion: a case report.
        Prog Orthod. 2015; 16: 10-17
        • Iwasaki T.
        • Saitoh I.
        • Takemoto Y.
        • Inada E.
        • Kanomi R.
        • Hayasaki H.
        • Yamasaki Y.
        Improvement of nasal airway ventilation after rapid maxillary expansion evaluated with computational fluid dynamics.
        Am J Orthod Dentofacial Orthop. 2012; 141: 269-278
        • Iwasaki T.
        • Takemoto Y.
        • Inada E.
        • Sato H.
        • Suga H.
        • Saitoh I.
        • Yamasaki Y.
        The effect of rapid maxillary expansion on pharyngeal airway pressure during inspiration evaluated using computational fluid dynamics.
        Int J Pediatr Otorhinolaryngol. 2014; 78: 1258-1264
        • Iwasaki T.
        • Sato H.
        • Suga H.
        • Takemoto Y.
        • Inada E.
        • Saitoh I.
        • Kakuno E.
        • Kanomi R.
        • Yamasaki Y.
        Relationships among nasal resistance, adenoids, tonsils, and tongue posture and maxillofacial form in Class II and Class III children.
        Am J Orthod Dentofacial Orthop. 2017; 151: 929-940
        • Iwasaki T.
        • Yanagisawa-Minami A.
        • Suga H.
        • Shirazawa Y.
        • Tsujii T.
        • Yamamoto Y.
        • Ban Y.
        • Sato-Hashiguchi M.
        • Sato H.
        • Kanomi R.
        • Yamasaki Y.
        Rapid maxillary expansion effects of nasal airway in children with cleft lip and palate using computational fluid dynamics.
        Orthod Craniofac Res. 2019; 22: 201-207
        • Kita S.
        • Oshima M.
        • Shimazaki K.
        • Iwai T.
        • Omura S.
        • Ono T.
        Computational fluid dynamic study of nasal respiratory function before and after bimaxillary orthognathic surgery with bone trimming at the inferior edge of the pyriform aperture.
        J Oral Maxillofac Surg. 2016; 74: 2241-2251
        • Sittitavornwong S.
        • Waite P.D.
        • Shih A.M.
        • Cheng G.C.
        • Koomullil R.
        • Ito Y.
        • Cure J.K.
        • Harding S.M.
        • Litaker M.
        Computational fluid dynamic analysis of the posterior airway space after maxillomandibular advancement for obstructive sleep apnea syndrome.
        J Oral Maxillofac Surg. 2013; 71: 1397-1405
        • Yu C.C.
        • Hsiao H.D.
        • Lee L.C.
        • Yao C.M.
        • Chen N.H.
        • Wang C.J.
        • Chen Y.R.
        Computational fluid dynamic study on obstructive sleep apnea syndrome treated with maxillomandibular advancement.
        J Craniofac Surg. 2009; 20: 426-430
        • Bell W.H.
        • Epker B.N.
        Surgical-orthodontic expansion of the maxilla.
        Am J Orthod. 1976; 70: 517-528
        • Cherobin G.B.
        • Voegels R.L.
        • Gebrim E.M.M.S.
        • Garcia G.J.M.
        Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
        PLoS One. 2018; 13e0207178
        • Kayalar E.
        • Schauseil M.
        • Kuvat S.V.
        • Emekli U.
        • Fıratlı S.
        Comparison of tooth-borne and hybrid devices in surgically assisted rapid maxillary expansion: a randomized clinical cone-beam computed tomography study.
        J Craniomaxillofac Surg. 2016; 44: 285-293
        • Hino C.T.
        • Pereira M.D.
        • Sobral C.S.
        • Kreniski T.M.
        • Ferreira L.M.
        Transverse effects of surgically assisted rapid maxillary expansion: a comparative study using Haas and Hyrax.
        J Craniofac Surg. 2008; 19: 718-725
        • Salgueiro D.G.
        • Rodrigues V.H.L.O.
        • Tieghi-Neto V.
        • Menezes C.C.
        • Gonçales E.S.
        • Ferreira Jr., O.
        Evaluation of opening pattern and bone neoformation at median palatal suture area in patients submitted to surgically assisted rapid maxillary expansion (SARME) through cone beam computed tomography.
        J Appl Oral Sci. 2015; 23: 397-404
        • Koudstaal M.J.
        • Wolvius E.B.
        • Schulten A.J.M.
        • Hop W.C.J.
        • Van der Wal K.G.H.
        Stability, tipping and relapse of bone-borne versus tooth-borne surgically assisted rapid maxillary expansion; a prospective randomized patient trial.
        Int J Oral Maxillofac Surg. 2009; 38: 308-315
        • Gürler G.
        • Kaptan Akar N.
        • Delilbaşı Ç.
        • Kaçar İ.
        Skeletal changes following surgically assisted rapid maxillary expansion (SARME).
        Eur Oral Res. 2018; 52: 94-98
        • Kunz F.
        • Linz C.
        • Baunach G.
        • Böhm H.
        • Meyer-Marcotty P.
        Expansion patterns in surgically assisted rapid maxillary expansion: transpalatal distractor versus Hyrax appliance.
        J Orofac Orthop. 2016; 77: 357-365
        • Williams B.J.D.
        • Currimbhoy S.
        • Silva A.
        • O’Ryan F.S.
        Complications following surgically assisted rapid palatal expansion: a retrospective cohort study.
        J Oral Maxillofac Surg. 2012; 70: 2394-2402
        • Matteini C.
        • Mommaerts M.Y.
        Posterior transpalatal distraction with pterygoid disjunction: a short-term model study.
        Am J Orthod Dentofacial Orthop. 2001; 120: 498-502
        • Jensen T.
        • Rodrigo-Domingo M.
        Surgically assisted rapid maxillary expansion (SARME) with or without intraoperative releasing of the nasal septum.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2017; 123: 85-90
        • Chamberland S.
        • Proffit W.R.
        Short-term and long-term stability of surgically assisted rapid palatal expansion revisited.
        Am J Orthod Dentofacial Orthop. 2011; 139: 815-822
        • Goldenberg D.C.
        • Goldenberg F.C.
        • Alonso N.
        • Gebrin E.S.
        • Amaral T.S.
        • Scanavini M.A.
        • Ferreira M.C.
        Hyrax appliance opening and pattern of skeletal maxillary expansion after surgically assisted rapid palatal expansion: a computed tomography evaluation.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106: 812-819
        • Seeberger R.
        • Abe-Nickler D.
        • Hoffmann J.
        • Kunzmann K.
        • Zingler S.
        One-stage tooth-borne distraction versus two stage bone-borne distraction in surgically assisted maxillary expansion (SARME).
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2015; 120: 693-698
        • Zandi M.
        • Miresmaeili A.
        • Heidari A.
        Short-term skeletal and dental changes following bone-borne versus tooth-borne surgically assisted rapid maxillary expansion: a randomized clinical trial study.
        J Craniomaxillofac Surg. 2014; 42: 1190-1195
        • Bell W.H.
        • Jacobs J.D.
        Surgical-orthodontic correction of horizontal maxillary deficiency.
        J Oral Surg. 1979; 37: 897-902