Advertisement

Biomechanics of mandibular reconstruction: a review

Published:November 30, 2009DOI:https://doi.org/10.1016/j.ijom.2009.11.003

      Abstract

      Knowledge of the biomechanics of the mandible allows the surgeon to understand the forces acting on the mandible during function and the resulting deformation that can occur. This allows the appropriate selection and placement of osteosynthesis plates to neutralize these forces. Many methods have been proposed for mandibular reconstruction, each of which has strengths and weaknesses. Most papers evaluating these techniques have focused on survival rates and the quality of the grafted bones, and there have been few studies of the biomechanics (stress distribution and strength) of the various types of reconstructed mandibles. This paper reviews the biomechanics of the mandible and the various methods of reconstruction reported in past studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abu-Serriah M.
        • Kontaxis A.
        • Ayoub A.
        • Harrison J.
        • Odell E.
        • Barbenel J.
        Mechanical evaluation of mandibular defects reconstructed using osteogenic protein-1 (rhOP-1) in a sheep model: a critical analysis.
        Int J Oral Maxillofac Surg. 2005; 34: 287-293
        • Al-Sukhun J.
        • Kelleway J.
        Biomechanics of the mandible: Part II. Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants.
        Int J Oral Maxillofac Implants. 2007; 22: 455-466
        • Arden R.L.
        • Rachel J.D.
        • Marks S.C.
        • Dang K.
        Volume-length impact of lateral jaw resections on complication rates.
        Arch Otolaryngol Head Neck Surg. 1999; 125: 68-72
      1. Bell F. Why do structures fail? Materials, human tissues and stress analysis. Stanley Thornes. Principles of mechanics and biomechanics. Chapter 6: 92–128.

        • Brown J.S.
        • Magennis P.
        • Rogers S.N.
        • Cawood J.I.
        • Howell R.
        • Vaughan E.D.
        Trends in head and neck microvascular reconstructive surgery in Liverpool (1992-2001).
        Br J Oral Maxillofac Surg. 2006; 44: 364-370
        • Castaňo M.C.
        • Zapata U.
        • Pedroza A.
        • Jaramillo J.D.
        • Roldán S.
        Creation of a three-dimensional model of the mandible and the TMJ in vivo by means of the finite element method (abstract).
        Int J Comput Dent. 2002; 5: 87-99
        • Champy M.
        • Lodde J.P.
        • Schmitt R.
        • Jaeger J.G.
        • Muster D.
        Mandibular osteosynthesis by miniature screwed plates via a buccal approach.
        J Oral Maxillofac Surg. 1978; 6: 14-21
        • Chiodo T.A.
        • Ziccardi V.B.
        • Janal M.
        • Sabitini C.
        Failure strength of 2.0 locking versus 2.0 conventional Synthes mandibular plates: A laboratory model.
        J Oral Maxillofac Surg. 2006; 64: 1475-1479
        • Choi A.H.
        • Ben-Nissan B.
        • Conway R.C.
        Three-dimensional modeling and finite element analysis of the human mandible during clenching.
        Aust Dent J. 2005; 5: 42-48
        • Curtis D.A.
        • Plesh O.
        • Hannam A.G.
        • Sharma A.
        • Curtis T.A.
        Modeling of jaw biomechanics in the reconstructed mandibulectomy patient.
        J Prosthet Dent. 1999; 81: 167-173
        • Daegling D.J.
        • Hylander W.L.
        Experimental observation, theoretical models and biomechanical inference in the study of mandibular form.
        Am J Phy Anthropol. 2000; 112: 541-551
        • Dechow P.C.
        • Hylander W.L.
        Elastic properties and masticatory bone stress in the macaque mandible.
        Am J Phys Anthropol. 2000; 112: 553-574
        • Dechow P.C.
        • Nail G.A.
        • Schwartz-Dabney C.L.
        • Ashman R.B.
        Elastic properties of human supraorbital and mandibular bone.
        Am J Phys Anthropol. 1993; 90: 291-306
      2. Draper ERC. Basic biomechanics. WB Saunders Company Limited. Sciences basic to orthopaedics. Editors Hughes SPF, McCarthy ID, 1998. Chapter 14: 201–212.

        • Gallas Torreira M.
        • Fernandez J.R.
        A three dimensional computer model of the human mandible in two simulated standard trauma situations.
        J Craniomaxillofac Surg. 2004; 32: 303-307
        • Harada K.
        • Watanabe M.
        • Ohkura K.
        • Enomoto S.
        Measure of bite force and occlusal contact area before and after bilateral sagittal split ramus osteotomy of the mandible using a new pressure sensitive device: a preliminary report.
        J Oral Maxillofac Surg. 2000; 58: 370-373
        • Hart R.T.
        • Hennebel V.V.
        • Thongpreda N.
        • Van Buskirk W.C.
        • Anderson R.C.
        Modeling the biomechanics of the mandible: a three dimensional finite element study.
        J Biomech. 1992; 25: 261-286
        • Haug R.H.
        • Street C.C.
        • Goltz M.
        Does plate adaptation affect stability? A biomechanical comparison of locking and nonlocking plates.
        J Oral Maxillofac Surg. 2002; 60: 1319-1326
      3. Hayes WC. Biomechanics of cortical and trabecular bone: Implications for assessment of fracture risk. Raven Press. Basic Orthopaedic Biomechanics, 1991. Chapter 3: 110–111.

        • He Y.
        • Zhang Z.Y.
        • Zhu H.G.
        • Qiu W.
        • Jiang X.
        • Guo W.
        Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined marrow stromal cells with three-dimensional tricalcium phosphate.
        J Craniofac Surg. 2007; 18: 800-805
        • Hidalgo D.A.
        • Pusic A.L.
        Free-flap mandibular reconstruction: A 10-year follow-up study.
        Plat Reconstruc Surg. 2002; 110: 438-449
        • Hylander W.L.
        Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses.
        Am J Phys Anthrop. 1984; 64: 1-46
        • Kimura A.
        • Nagasao T.
        • Kaneko T.
        • Tamaki T.
        • Miyamoto J.
        • Nakajima T.
        Adequate fixation of plates for stability during mandibular reconstruction.
        J Craniomaxillofac Surg. 2006; 34: 193-200
        • Knoll W.D.
        • Gaida A.
        • Maurer P.
        Stress tests of reconstruction plates for bridging mandibular angle defects.
        Mund Kiefer Gesichtchir. 2004; 8: 237-243
        • Knoll W.D.
        • Gaida A.
        • Maurer P.
        Analysis of mechanical stress in reconstruction plates for bridging mandibular angle defects.
        J Craniomaxillofac Surg. 2006; 34: 201-209
        • Kontaxis A.
        • Abu-Serriah M.
        • Ayoub A.F.
        • Barbenel J.C.
        Mechanical testing of recombinant human bone morphogenetic protein-7 regenerated bone in sheep mandibles.
        Proc Inst Mech Eng [h]. 2004; 218: 381-388
        • Koolstra J.H.
        Dynamics of the human masticatory system.
        Crit Rev Oral Biol Med. 2002; 13: 366-376
        • Korioth T.W.
        • Hannam A.G.
        Deformation of the human mandible during simulated tooth clenching.
        J Dent Res. 1994; 73: 56-66
        • Korioth T.W.
        • Romilly D.P.
        • Hannam A.G.
        Three-dimensional finite element stress analysis of the human dentate mandible.
        Am J Phy Anthropol. 1992; 88: 69-96
        • Madsen M.J.
        • Haug R.H.
        A biomechanical comparison of 2 techniques for reconstructing atrophic edentulous mandible fractures.
        J Oral Maxillofac Surg. 2006; 64: 457-465
        • Marinescu R.
        • Daegling D.J.
        • Rapoff A.J.
        Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions.
        Anat Rec A Discov Mol Cell Evol Biol. 2005; 283: 300-309
        • Markwardt J.
        • Pfeifer G.
        • Eckelt U.
        • Reitemeier B.
        Analysis of complications after reconstruction of bone defects involving complete mandibular resection using finite element modeling.
        Onkologie. 2007; 30: 121-126
        • Martola M.
        • Lindqvist C.
        • Hanninen H.
        • Al-Sukhun J.
        Fracture of titanium plates used for mandibular reconstruction following ablative tumour surgery.
        J Biomed Mater Res B Appl Biomater. 2007; 80: 345-352
        • Marunick M.T.
        • Mathes B.E.
        • Klein B.B.
        Masticatory function in hemimandibulectomy patients.
        J Oral Rehab. 1992; 19: 289-295
        • Maurer P.
        • Pistner H.
        • Schubert J.
        Computer assisted chewing power in patients with segmental resection of the mandible.
        Mund Kiefer Gesichtschir. 2006; 10: 37-41
        • Meyer U.
        • Vollmer D.
        • Homann C.
        • Schuon R.
        • Benthaus S.
        • Vegh A.
        • Felszegi E.
        • Joos U.
        • Piffko J.
        Experimental and finite-element models for the assessment of mandibular deformation under mechanical loading.
        Mund Kiefer Gesichtschir. 2000; 4: 14-20
        • Meyer C.
        • Kahn J.L.
        • Boutemi P.
        • Wilk A.
        Photoelastic analysis of bone deformation in the region of the mandibular condyle during mastication.
        J Craniomaxillofac Surg. 2002; 30: 160-169
        • Meyer C.
        • Serhir L.
        • Boutemi P.
        Experimental evaluation of three osteosynthesis devices used for stabilizing condylar fractures of the mandible.
        J Craniomaxillofac Surg. 2006; 34: 173-181
        • Misch C.E.
        • Qu Z.M.
        • Bidez M.W.
        Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement.
        J Oral Maxillofac Surg. 1999; 57: 700-706
        • Moscoso J.F.
        • Keller J.
        • Genden E.
        • Weinberg H.
        • Biller H.F.
        • Buchbinder D.
        • Urken M.L.
        Vascularized bone flaps on oromandibular reconstruction: a comparative anatomic study of bone stock from various donor sites to assess suitability for endosseous dental implants.
        Arch Otolaryngol Head Neck Surg. 1994; 120: 36-43
      4. Panjabi MM, White AA. Materials under loads. Churchill Livingstone. Biomechanics in the musculoskeletal system, 2001. Chapter 5: 65–101.

        • Richmond B.G.
        • Barth W.W.
        • Grosse I.
        • Dechow P.C.
        • Ross C.F.
        • Spencer M.A.
        • Strait D.S.
        Finite element analysis in functional morphology.
        Anat Rec A Discov Mol Cell Evol Biol. 2005; 283: 259-274
        • Ross C.F.
        • Patel B.A.
        • Slice D.E.
        • Strait D.S.
        • Dechow P.C.
        • Richmond B.G.
        • Spencer M.A.
        Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis.
        Anat Rec A Discov Mol Cell Evol Biol. 2005; 283: 288-299
        • Schupp W.
        • Arzdorf M.
        • Linke B.
        • Gutwald R.
        Biomechanical testing of different osteosynthesis systems for segmental resection of the mandible.
        J Oral Maxillofac Surg. 2007; 65: 924-930
        • Schwartz-Dabney C.L.
        • Dechow P.C.
        • Ashman R.B.
        Elastic properties of human mandibular symphysis.
        J Dent Res. 1991; 70: 518
        • Schwartz-Dabney C.L.
        • Dechow P.C.
        Variations in cortical material properties from throughout the human mandible.
        J Dent Res. 1997; 76: 249
        • Schwartz-Dabney C.L.
        • Dechow P.C.
        Variations in cortical material properties from throughout the human dentate mandible.
        Am J Phy Anthropol. 2003; 120: 252-277
        • Seikaly H.
        • Chau J.
        • Li F.
        • Driscoll B.
        • Seikaly D.
        • Calhoun J.
        • Calhoun K.H.
        Bone that best matches the properties of the mandible.
        J Otolaryngol. 2003; 32: 262-265
        • Strait D.S.
        • Wang Q.
        • Dechow P.C.
        • Ross C.F.
        • Richmond B.G.
        • Spencer M.A.
        • Patel B.A.
        Modeling elastic properties in finite element analysis: How much precision is needed to produce an accurate model?.
        Anat Rec A Discov Mol Cell Evol Biol. 2005; 283: 275-287
        • Tideman H.
        • Lee S.
        The TL Modular Endoprosthesis for Mandibular Reconstruction: a metallic yet biological approach.
        Asian J Oral Maxillofac Surg. 2006; 18: 5
        • Tie Y.
        • Wang D.M.
        • Ji Tong
        • Wang C.T.
        • Zhang C.P.
        Three-dimensional finite element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts.
        J Craniomaxillofac Surg. 2006; 34: 290-298
        • Toriumi D.M.
        • Kotler H.S.
        • Luxenberg D.P.
        • Holtrop M.E.
        • Wang E.A.
        Mandibular reconstruction with a recombinant bone inducing factor. Functional, histologic and biomechanical evaluation.
        Arch Otolaryngol Head Neck Surg. 1991; 117: 1101-1112
        • Unnewehr M.
        • Homann C.
        • Schmidt P.F.
        • Sotony P.
        • Fischer G.
        • Brinkmann B.
        • Bajanowski T.
        • DuChesne A.
        Fracture properties of the human mandible.
        Int J Legal Med. 2003; 117: 326-330
        • Van Eijden T.M.G.J.
        Biomechanics of the mandible.
        Crit Rev Oral Biol Med. 2000; 11: 123-136
        • Vollmer D.
        • Meyer U.
        • Joos U.
        • Vegh A.
        • Piffko J.
        Experimental and finite element study of a human mandible.
        J Craniomaxillofac Surg. 2000; 28: 91-96
        • Warnke P.H.
        • Springer I.N.
        • Acil Y.
        • Julga G.
        • Wiltfang J.
        • Ludwig K.
        • Russo P.A.
        • Sherry E.
        • Sivananthan S.
        • Hedderich J.
        • Terheyden H.
        The mechanical integrity of in vivo engineered heterotropic bone.
        Biomaterials. 2006; 27: 1081-1087
        • Wedel A.
        • Yontchev E.
        • Carlsson G.E.
        • Ow R.
        Masticatory function in patients with congenital and acquired maxillofacial defects.
        J Prosthet Dent. 1994; 72: 303-308
        • Williams J.M.
        • Adewunmi A.
        • Schek R.M.
        • Flanagan C.L.
        • Krebsbach P.H.
        • Feinberg S.E.
        • Hollister S.J.
        • Das S.
        Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
        Biomaterials. 2005; 26: 4817-4827
        • Yi Z.
        • Jian-Guo Z.
        • Guang-Yan Y.
        • Ling L.
        • Fu-Yun Z.
        • Guo-Cheng Z.
        Reconstruction plates to bridge mandibular defects: a clinical and experimental investigation in biomechanical aspects.
        Int J Oral Maxillofac Surg. 1999; 28: 445-450
        • Yi W.J.
        • Heo M.S.
        • Lee S.S.
        • Choi S.C.
        • Huh K.H.
        • Lee S.P.
        Direct measurement of trabecular bone anisotropy using directional fractal dimension and principal axes of inertia.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 104: 10-116